Skip to main content

Project of 12 V AC Dimmer Circuit Diagram


This is a simple Project of 12 V AC Dimmer Circuit Diagram. 12-V AC Dimmer Circuit Diagram The circuit described here is derived from a conventional design for a simple lamp dimmer, as you can see if you imagine a diac connected between points A and B. The difference between this circuit and a normal diac circuit is that a diac circuit won’t work at 12 V. This is the fault of the diac. Most diacs have a trigger voltage in the range of 30 to 40V, so they can’t work at 12 V, which means the dimmer also can’t work.



Project of 12 V AC Dimmer Circuit Diagram

12-V AC Dimmer Circuit Diagram

The portion of the circuit between points A and B acts like a diac with a trigger voltage of approximately 5.5 V. The network formed by R1, P1 and C1 generates a phase shift relative to the supply voltage. The ‘diac equivalent’ circuit outputs a phase-shifted trigger pulse to the triac on each positive and negative half-cycle of the sinusoidal AC voltage.

This works as follows. First consider the positive half of the sine wave. C1 charges when the voltage starts to rise, with a time constant determined by C1, R1 and P1. T1 does not start conducting right away. It waits until the voltage across D2 reaches 4.7 V and the Zener diode starts to conduct. Then current starts to flow, driving T1 and T3 into conduction. This produces a pulse at point B. The same principle applies to the negative half of the sine wave, in this case with D1, T2 and T4 as the key players.

The trigger angle can be adjusted with P1 over a range of approximately 15 degrees to 90 degrees. C2 provides a certain amount of noise decoupling. Depending on the load, the triac may need a heat sink. You can use practically any desired transistors; the types indicated here are only examples. If the circuit does not dim far enough, you can change the value of P1 to 25 kΩ. This allows the trigger angle to be increased to 135 degrees.

Note: this circuit works fine with normal transformers, but not with ‘electronic ’ transformers.



Comments

Popular posts from this blog

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link