Skip to main content

Posts

Showing posts with the label Input

8051 INPUT OUTPUT PORTS

The AT89C51 from ATMEL is the most commonly used variation of the 8051 microcontroller because of the built-in Flash which makes programming / burning very easy. The 8051 has a total of 4 ports for input / output operations which means you can transfer data in or out of the microcontroller through these ports. Let's have a brief introduction to these ports. UPDATE: You can also click this link for an updated version of this post. READ MORE

Input Impedance Booster Circuit

The input resistance of a.c.-coupled op amp circuits depends almost entirely on the resistance with which the d.c. setting is determined. If CMOS op amps are used, the input resistance is normally high, currently up to 10 MΩ. If a higher value is needed, a bootstrap circuit may be used. This enables the input resistance to be boosted artificially to a very high value, indeed In the circuit shown in the diagram, resistor R1 sets the d.c. point for IC1a. The terminal of the resistor linked to pin 7 of IC1 would normally be at earth potential, so that the input impedance would be 10 MΩ. Connecting the other terminal of the resistor to earth via IC1a and network C2-R3-R2 as far as d.c. is concerned results in the requisite d.c. setting of the op amp. Circuit diagram: Input Impedance Booster II Circuit Diagram As far as alternating voltages are concerned, the input signal is fed back so that only a tiny alternating current flows through R1. Therefore, Rin=R1[(R2+R3)/R3]. With resistor value...

1 1 Regulator Handles Two Input Voltages Circuit Diagram

Regulator Handles Two Input Voltages circuit in Fig 1 supplies both 3.3 and 5V to transitional circuits that employ both the new 3.3V and older 5V devices. Additionally, because the regulator accepts either 3.3 or 5V inputs, you could plug it into either a new 3.3V system or an old 5V system.The circuit consists of two sections: a dc/dc converter and a double-pole, double-throw (dpdt) switch. The dpdt switch comprises a pair of dual n-channel MOSFETs (Q2 and Q3) and their associated high-side drivers. Upon power-up, the comparator in IC2 determines the state of the circuit. The comparator’s output, IC2 pin 6, goes to the input of the MOSFET driver, IC1. The driver internally generates a gatedrive voltage 8.8V above the device’s supply voltage. This high voltage drives the appropriate MOSFETs in Q2 and Q3. IC2 is also the heart of a flying-capacitor, buck/boost dc/dc converter. Unlike other switching-regulator schemes, this topology needs no transformers. Transistor Q1 controls this se...

Daul Regulator Handles Two Input Voltages Circuit

The circuit in Fig 1 supplies both 3.3 and 5V to transitional circuits that employ both the new 3.3V and older 5V devices. Additionally, because the regulator accepts either 3.3 or 5V inputs, you could plug it into either a new 3.3V system or an old 5V system.The circuit consists of two sections: a dc/dc converter and a double-pole, double-throw (dpdt) switch. The dpdt switch comprises a pair of dual n-channel MOSFETs (Q2 and Q3) and their associated high-side drivers. Upon power-up, the comparator in IC2 determines the state of the circuit. The comparator’s output, IC2 pin 6, goes to the input of the MOSFET driver, IC1. The driver internally generates a gatedrive voltage 8.8V above the device’s supply voltage. This high voltage drives the appropriate MOSFETs in Q2 and Q3. IC2 is also the heart of a flying-capacitor, buck/boost dc/dc converter. Unlike other switching- regulator schemes, this topology needs no transformers. Transistor Q1 controls this section’s output voltage, VS. When...

3 Input Video MUX Cable

The circuit diagram shows a low-cost 3-input video MUX cable driver. In this circuit, the amplifier is loaded by the sum of RF and RG of each disabled amplifier. Resistor values have been chosen to keep the total back termination at 75 Ω while maintaining a gain of 1 at the 75-Ω load. The switching time between any two channels is approximately 32 ns when both enable pins are driven. When designing a circuit board for this cable driver, care should be taken to minimize trace lengths at the inverting input. The ground plane should also be pulled away from RF and RG on both sides of the board to minimize stray capacitance. Current consumption of the cable driver is a modest 8mA.

Low Cost Step Down Converter With Wide Input Voltage Range

The circuit described here is mostly aimed at development engineers who are looking for an economical step-down converter which offers a wide input voltage range. As a rule this type of circuit employs a step-down converter with integrated switching element. However, by using a more discrete solution it is possible to reduce the total cost of the step-down converter, especially when manufacturing in quantity. The TL5001A is a low-cost PWM controller which is ideal for this project. The input voltage range for the step-down converter described here is from 8 V to 30 V, with an output voltage of 5 V and a maximum output current of 1.5 A. When the input voltage is applied the PWM output of IC1 is enabled, taking one end of the voltage divider formed by R1 and R2 to ground potential. The current through the voltage divider will then be at most 25 mA: this value is obtained by dividing the maximum input voltage (30 V) minus the saturation voltage of the output driver (2 V) by the total resi...