Skip to main content

Posts

Showing posts with the label Lights

Outdoor LED Solar Lights Circuit Schematic

This Outdoor LED Solar Garden Lights project is a hobby circuit of an automatic garden light using a LDR and 6V/5W solar panel. During day time, the internal rechargeable 6 Volt SLA battery receives charging current from the connected solar panel through polarity protection diode D9 and current limiting resistor R10. If ambient light is normal, transistor T1 is reverse biased by IC1 (LM555). Here IC1 is wired as a medium current inverting line driver, switched by an encapsulated light detector (10mm LDR). Multi-turn trimpot P1 sets the detection sensitivity. When ambient light dims, transistor T1 turns on to drive the white LED string (D1-D8). Now this lamp load at the output of T1 energizes. Resistors R1-R8 limits the operating current of the LEDs. When the ambient light level restores, circuit returns to its idle state and light(s) switched off by the circuit. Outdoor Garden Solar Lights Circuit Diagram Assemble the Outdoor Solar Lights circuit on a general purpose PCB and enclose t...

Touch Based Blinking Lights

This circuit demonstrates the principle and operation of application based on touch sensor. The circuit is divided into three parts: Input, 555 timer and output. A touch plate is used for the input and output can be seen across an LED or a buzzer. Some application of the circuit include touch based blinking lights, touch buzzer, touch switch etc. The touch plates is connected to the trigger pin of the 555 timer IC. When we touch the touch plates the output of the touch plates becomes zero thereby providing an active low trigger to the IC 555. The IC is configured in the monostable mode .The output of the IC is a pulse whose frequency is set by the resistor (R1) and capacitor (C1) according to the formula [F=1/(1.1*R*C)]. In this case it produces a pulse with frequency of about 0.9 hertz and time period of 1.1 seconds. In monostable mode pin7 (discharge pin) and pin6 (threshold pin) are shorted while R1 is connected between pin7 and Vcc and C1 is connected between pin 6 and ground....

Brake Lights Monitor

The circuit described below monitors your car's  brake lights, and indicates by a light emiting diode  whether they both function correctly. In that sense, it can save you money by preventing your being fined for driving with defective brake lights, and it also leads to increasing road safety. Circuit diagram : Brake Lights Monitor Circuit Diagram The monitor depends inevitably on the voltage drop across the supply lines to the two lamps. For the circuit to work correctly, that drop needs to be greater than 0.6 V. If this is not so, the drop must be increased by adding a 5 V diode in series with each lamp. Transistor Ti and T2 in figure 1 form a  Schmitt trigger, which reacts to the voltage drop across the supply lines to the two brake lights. This reaction manifests itself in Di lighting via T3. If  one of the brake lights is faulty, the switch-on cur- rent drawn by the other lamp will cause Di to light  briefly when the brake pedal is pressed. If both  brake lights are defec...