The above sequence is a circuit of development of the transistor circuit tester before, which of course added few more components , and resulting in even be better. Examiners transistor circuit above only knows his gain is only on the collector . In addition to well known techniques of data materials used therein . That is , if the elements germanium and the like which are in the tool is still functioning or vice versa.Part List :R1=330R/0,5WR2=27KR3=1KR4=1KR5,R6=5K6C1=1uFC2=2,2uFQ1=Socket transistorT1=Transformator output (OT)S1=Switches frictionG1=3VX1-1,X1-2=Speaker connectorHow to test :Emitter associated with foot condensator and resistor R4, Base is connected with one leg transformer OT , The Collector is connected to the foot of R2 and R3. If you hear a hiss , the sound in few seconds it still has not changed means that transistor still disqualify technical data.
This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Comments
Post a Comment