Skip to main content

New Zener Diode Circuit Diagram


Here we used the 12-0-12 step-down 500mA power transformer. The output of the transformer is supply to the bridge rectifier made of D2 , D3, D4, D5 which is use to convert the Ac supply to the DC supply. Capacitor C1 is used as a filter the DC output. We used  470 μF capacitor  but you can used any. More the value of capacitor more pure DC can be obtained. Resistor R2 of 2.2K is used as bleeder. Here you can see the transistor T1 [BC147B] and transistor T2 [SL100] are use for regulator compressor.

The DC output is fed to these transistors. T1 acts as a series pass driver or a current regulator. Base bias for transistor T1 is achieved from the supply through resistor  R3 of 680 ohms  as resistor R2 of  10k is a base bleeder and capacitor C2 1 μF  filters base potential. When the test probe is fully open with no zener connected, the base potential of transistor T1 is around 32V that is across resistor R4 or capacitor C2.

New Zener Diode Circuit Diagram 


Transistor T1 [BC147B] provides the base potential for transistor T2 [SL100] which acts as a series pass regulator, providing the net DC voltage equivalent to T1 base potential which is fed to the voltmeter.
Now, the voltmeter reads around 30V with no zener diode connected across the probe. When a zener  diode is connected across the test probe, the base potential of transistor T1 falls to zener diode breakdown voltage. With this, the base potentials for transistor T2 and transistor T1 become equal. The meter now shows the actual zener voltage. An adjustment of 0.6 V can be done on the meter scale by shifting the needle with zero adjustment screw on the meter.

Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link