Skip to main content

Lead Acid Battery Charger Circuit


This circuit delivers an initial voltage of 2.5V per cell to rapidly charge a car battery. The charging current decreases as the battery charges and when the current drops to 180 mA the charging circuit reduces the output voltage to 2.35 V per cell, leaving the battery in a fully charged state. This lower voltage prevents the battery from overcharching, which will shorten its life.

The LM301A compares the voltage drop across R1 with a 18 mV reference set by R2. The comparator’s output controls the voltage regulator, and produce the lower float voltage when the battery-charging current, passing through R1, drops bellow 180 mA.
Temperature compensation helps prevent overcharging, the LM334 temperature sensor should be placed near or on the battery. Because batteries need more compensation at lower temperatures, change R5 to 30Ω for a tc of -5mV/0C per cell il this circuit will be used at temperatures below – 200C.
The charger’s input voltage must be filtered dc that is at least 3V higher than the maximum required output voltage. Choose a regulator for the maximum current needed: LM371 for 2A, LM350 for 4A, LM338 for 8A. At 250C and with no load, adjust R7 for a Vout of 7.05V, and adjust R8 for a Vout of 14.1V.

Car battery charger circuit diagram

lead acid battery charger


Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link