Skip to main content

Simple Noise Level Alarm Circuit Diagram


Noise is a serious environmental problem that affects us in our daily life. There is scientific evidence supporting that noise exposure can cause hearing loss, hypertension, heart disease, annoyance, sleep disturbance and decreased performance in schools. Sound-level indicators like the one presented here can help address this problem. This sound-level indicator monitors the sound level and indicates through an LED when the level is above the preset value.



Circuit and working
Fig. 1 shows the circuit of noise-level alarm. The circuit is built around three BC550 npn general-purpose transistors (T1 through T3), electret microphone (MIC1), two LEDs (LED1 and LED2) and a few other components.

Simple Noise-Level Alarm Circuit Diagram


Simple Noise-Level Alarm Circuit Diagram
 Fig. 1: Circuit of noise-level alarm

The sound is captured by microphone MIC1 and amplified by first-stage high-gain transistor T1. Trimmer potentiometer VR1 is used to adjust the threshold level. the signal is amplified again with second-stage transistor T2. This amplified signal is rectified by diode D1 and the charge is stored in capacitor C10. Diode D1 should preferably be a small-signal Schottky diode such as BAT81, BAT82, BAT83, BAT85 or better. You can use 1N4148 and 1N914 also but the signal from the input should be stronger.

When the voltage across capacitor C10 is high enough, transistor T3 conducts and LED1 glows to indicate that the sound level is higher than the set level. LED2 indicates power supply is available to the circuit.

Transistors T1, T2 and T3 should be high-gain type, such as BC550C, BC109C and BC108C. For powering the circuit, you can use 6V from four AA-size batteries or 6V from a regulated wall adaptor.

Construction and testing
An actual-size, single-side PCB for the noise-level indicator is shown in Fig. 2 and its component layout in Fig. 3. After assembling the circuit on a PCB, enclose it in a suitable case. Fix LED1, LED2 and potentiometer VR1 on the front panel.



Fig. 2: Actual-size, single-side PCB for noise-level indicator


Fig. 3: Component layout for the PCB


After connecting the 6V power supply to the circuit, set the desired threshold of sound and adjust VR1 to the point where LED1 starts glowing. For that, switch on radio or TV set and set its volume to a level where you want the warning to start. Now adjust potentiometer VR1 to the point where LED1 starts glowing.

To test the circuit for proper functioning, check correct input supply at TP1 with respect to TP0. LED2 also indicates the same. LED1 glows when the sound level is above threshold, which can be simulated with a radio or music system.

Sourced by : author  Petre Tzv. Petrov

Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link