Skip to main content

Simple 555 Timer Circuit key cod


A very simple electronic key code lock circuit that require few external components can be constructed using this schematic diagram . This electronic key code lock circuit is based on a common 555 timer circuit and some other common components .

This low cost key code circuit use six switches that needs to be pressed to open the lock, but only two switches at a time. In many other , more expensive electronic circuits the key code is formed by pressing some switches one by one , not like in this case two switches . If you don’t like to press two switches in the same time you can eliminate one switch , but in that case the code can be more easy to guess by someone ells .Thus a total of three sets of switches have to be pressed in a particular sequence. (Of these three sets, one set is repeated.)

An essential property of this electronic code lock is that it works in monostable mode, i.e. once triggered, the output becomes high and remains so for a period of time, governed by the timing components, before returning to the quiescent low state.Pin 2 of 555 timer is the triggering input pin which, when held below 1/3 of the supply voltage, drives the output to high state. The threshold pin 6, when held higher than 2/3 of the supply voltage, drives the output to low state. By applying a low-going pulse to the reset pin 4, the output at pin 3 can be brought to the quiescent low level. Thus the reset pin 4 should be held high for normal operation of the IC.

Three sets of switches SA-SC, S1- S8 and S3-S4 are pressed, in that order, to open the lock. On pressing the switches SA and SC simultaneously, capacitor C3 charges through the potential
divider comprising resistors R3 and R4, and on releasing these two switches, capacitor C3 starts discharging through resistor R4. Capacitor C3 and resistor R4 are so selected that it takes about five seconds to fully discharge C3.


Depressing switches S1 and S8 in same time, within five seconds of releasing the switches SA and SC, pulls pin 2 to ground and IC 555 is triggered. The capacitor C1 starts charging through resistor R1. As a result, the output (pin 3) goes high for five seconds.Within these five seconds, switches SA and SC are to be pressed momentarily once again, followed by the depression of last code-switch pair S3-S4.

These switches connect the relay to output pin 3 and the relay is energised.
The contacts of the relay close and the solenoid pulls in the latch (forming part of a lock) and the lock opens. The remaining switches are connected between reset pin 4 and ground. If any one of these switches is pressed, the IC is reset and the output goes to its quiescent low state.

Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link