Skip to main content

Build Emergency Light Alarm


Warning! The circuit is connected to 220Vac mains, then some parts in the circuit board are subjected to lethal potential!. Avoid touching the circuit when plugged and enclose it in a plastic box.
Powered by two AA NI-CD batteries Four switchable options

Circuit diagram

 

 

 

Parts:

  • R1 220K 1/4W Resistor
  • R2 470R 1/2W Resistor
  • R3 390R 1/4W Resistor
  • R4 1K5 1/4W Resistor
  • R5 1R 1/4W Resistor
  • R6 10K 1/4W Resistor
  • R7 330K 1/4W Resistor
  • R8 470R 1/4W Resistor
  • R9 100R 1/4W Resistor
  • C1 330nF 400V Polyester Capacitor
  • C2 10µF 63V Electrolytic Capacitor
  • C3 100nF 63V Polyester Capacitor
  • C4 10nF 63V Polyester Capacitor
  • D1-D5 1N4007 1000V 1A Diodes
  • D6 LED Green (any shape)
  • D7 1N4148 75V 150mA Diode
  • Q1,Q3,Q4 BC547 45V 100mA NPN Transistors
  • Q2,Q5 BC327 45V 800mA PNP Transistors
  • SW1,SW2 SPST Switches
  • SW3 SPDT Switch
  • LP1 2.2V or 2.5V 250-300mA Torch Lamp
  • SPKR 8 Ohm Loudspeaker
  • B1 2.5V Battery (two AA NI-CD rechargeable cells wired in series)
  • PL1 Male Mains plug

Device purpose:

This circuit is permanently plugged into a mains socket and NI-CD batteries are trickle-charged. When a power outage occurs, the lamp automatically illuminates. Instead of illuminating a lamp, an alarm sounder can be chosen. When power supply is restored, the lamp or the alarm is switched-off. A switch provides a "latch-up" function, in order to extend lamp or alarm operation even when power is restored.

Circuit operation:

Mains voltage is reduced to about 12V DC at C2's terminals, by means of the reactance of C1 and the diode bridge (D1-D4). Thus avoids the use of a mains transformer. Trickle-charging current for the battery B1 is provided by the series resistor R3, D5 and the green LED D6 that also monitors the presence of mains supply and correct battery charging. Q2 & Q3 form a self-latching pair that start operating when a power outage occurs. In this case, Q1 biasing becomes positive, so this transistor turns on the self latching pair. If SW3 is set as shown in the circuit diagram, the lamp illuminates via SW2, which is normally closed; if set the other way, a square wave audio frequency generator formed by Q4, Q5 and related components is activated, driving the loudspeaker. If SW1 is left open, when mains supply is restored the lamp or the alarm continue to operate. They can be disabled by opening the main on-off switch SW2. If SW1 is closed, restoration of the mains supply terminates lamp or alarm operation, by applying a positive bias to the Base of Q2.

Notes:

Close SW2 after the circuit is plugged.
This circuit was awarded with publication in ELECTRONICS WORLD "Circuit Ideas", September 2001 issue, page 708.



author: RED Free Circuit Designs

Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link