Skip to main content

Cranial Electrotherapy Stimulator Circuit Diagram


Owing to the recent launching in Europe of Cranial Electrotherapy Stimulation (CES) portable sets, we have been "Electronically Stimulated" in designing a similar circuit for the sake of hobbyists. CES is the most popular technique for electrically boosting brain power, and has long been prescribed by doctors, mainly in the USA, for therapeutic reasons, including the treatment of anxiety, depression, insomnia, and chemical dependency. CES units generate an adjustable current (80 to 600 microAmperes) that flows through clips placed on the earlobes. 

The waveform of this device is a 400 milliseconds positive pulse followed by a negative one of the same duration, then a pause of 1.2 seconds. The main frequency is 0.5 Hz, i.e. a double pulse every 2 seconds. Some people report that this kind of minute specialized electrical impulses contributes to achieve a relaxed state that leaves the mind alert. Obviously we can't claim or prove any therapeutic effectiveness for this device, but if you are interested in trying it, the circuit is so cheap and so simple to build that an attempt can be made with quite no harm.

Circuit diagram:
cranial-electrotherapy-stimulator-circuit diagram
Parts:
R1___________1M5 1/4W Resistor
R2___________15K 1/4W Resistor
R3___________100K Linear Potentiometer
R4___________2K2 1/4W Resistor
C1___________330nF 63V Polyester Capacitor
C2___________100µF 25V Electrolytic Capacitor
D1___________3mm. Red LED
IC1___________7555 or TS555CN CMos Timer IC
IC2___________4017 Decade counter with 10 decoded outputs IC
SW1__________SPST Slider Switch
B1____________9V PP3 Battery Clip for PP3 Battery
Two Earclips with wires (see notes)

Circuit operation:

IC1 forms a narrow pulse, 2.5Hz oscillator feeding IC2. This chip generates the various timings for the output pulses. Output is taken at pins 2 & 3 to easily obtain negative going pulses also. Current output is limited to 600µA by R2 and can be regulated from 80 to 600µA by means of R3. The LED flashes every 2 seconds signaling proper operation and can also be used for setting purposes. It can be omitted together with R4, greatly increasing battery life.

Notes:
  • In order to obtain a more precise frequency setting take R1=1M2 and add a 500K trimmer in series with it.
  • In this case use a frequency meter to read 2.5Hz at pin 3 of IC1, or an oscilloscope to read 400msec pulses at pins 2, 3 or 10, adjusting the added trimmer.
  • A simpler setting can be made adjusting the trimmer to count exactly a LED flash every 2 seconds.
  • Earclips can be made with little plastic clips and cementing the end of the wire in a position suited to make good contact with earlobes.
  • Ultra-simple earclips can be made using a thin copper foil with rounded corners 4 cm. long and 1.5 cm. wide, soldering the wire end in the center, and then folding the foil in two parts holding the earlobes.
  • To ensure a better current transfer, this kind of devices usually has felt pads moistened with a conducting solution interposed between clips and skin.
  • Commercial sets have frequently a built-in timer. Timing sessions last usually 20 minutes to 1 hour. For this purpose you can use the Timed Beeper the Bedside Lamp Timer or the Jogging Timer circuits available on this website, adjusting the timing components in order to suit your needs.

Streampowers

Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link