Skip to main content

8 Channel DTMF Link Encoder Circuit Diagram


This is a 8-Channel DTMF : Encoder Circuit Diagram. Generated millions of times every day by our telephone keypads, the eight DTMF frequencies were chosen so that the harmonics and intermodulation do not generate significant in-band signal levels. The signal is encoded as a pair of sine waves, ensuring that no frequency is a multiple of the other and the sum and difference between two frequencies does not match any single tone and that’s why DTMF sounds so ugly!T he DTMF encoder circuit show n here is based on the HT9200B tone generator device produced by Holtek and distributed by Futurlec  among others. The encoder is complemented by a decoder elsew her e in this publication.
8-Channel DTMF : Encoder Schematic
8-Channel DTMF : Encoder Schematic

The HT2900B is supplied as a nice old fashioned 14-pin device. It can be instructed by a microcontroller to generate 16 dual tones and (in serial mode only) 8 single tones from the DTMF pin output . It s 8 - pin ‘ younger brother’ the HT9200A provides a serial mode only whereas the HT9200B contains a select-able serial/parallel mode interface for various applications such as security systems, home automation, remote control through telephone lines, communication systems, etc.

A 74HC148 8-to-3 priority encoder is used to convert the ‘keypad’ information from S1–S8 into 3-bit tone selection words the HT9200B wants to see at its input. The ninth switch, S9, is connected to input D3 on the encoder chip. Pressing one of the switches S1–S8 generates a complementary 3-bit binary word at outputs A0, A1, A2 of IC1. IC2 then generates the dual tones accordingly to these binary codes.

Pressing S1–S8 generates the dual tones for DTMF digits C, B, A, #, *, 0, 9 and 8. By pressing and holding down S9 the DTMF digits 7, 6, 5, 4, 3, 2, 1 and D are generated.

To generate the eight single frequencies accurately a 3.58 MHz crystal quartz is connected to pin 2 and 3 of IC2. Pin 13 of the HT9200B supplies a DTMF signal of about 150 mV at a 5 KO load.

Pull-up resistor array R2 may be omitted if you substitute the 74HC148 with a 74LS148. R1 must be present in that case, otherwise it can be omitted.

The circuit consumes about 2 mA from a regulated 5 V supply. It should be easy to build on a small piece of prototyping board. link

Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link