Skip to main content

Wireless Baby Monitor


Walkie-talkies (also known as handheld or PMR, Personal Mobile Radio) can be bought at low prices even from department stores, and they can be operated without a licence in many countries. Considering the low cost, such a set would be very suitable for use as a wireless baby monitor, with the addition of several external components. These are connected to the jack sockets for an external loudspeaker/microphone and an external PTT (Push-To-Talk) switch, which are often found on these devices.

Project Image :

Wireless Baby Monitor Image

Wireless Baby Monitor Project Image

The walkie-talkie with the extra electronics and microphone is placed in the baby’s room. When the PTT switch on the other walkie-talkie is actuated for about a second the ‘baby’ walkie-talkie produces a series of tones, which the external electronics can detect. This then activates its own PTT switch for about 5 seconds, so it switches over to transmit. During this time the other device can hear what the external microphone picks up.

Circuit Diagram :

Wireless Baby Monitor-Circuit-Diagram

Figure 1-Wireless Baby Monitor Circuit Diagram

Figure 1 shows the circuit that the author designed for this. It has been designed specifically for a Tevion 3000 PMR sold some time ago by Aldi. This type of PMR has a combined jack socket that includes all the required connections.

The voltage present on the PTT connector is used to generate the supply voltage for the circuit via R3, D1 and C1/C2. When the loud-speaker output presents a series of tones (when the PTT switch on the other walkie-talkie is held down), it causes T1 to conduct. This also turns on T2 and T3, so that the external microphone is connected to ground. The resulting current that f lows through the microphone should be sufficient to activate the PTT circuit in the walkie-talkie, causing it to transmit. If the external microphone doesn’t draw sufficient current, a resistor (R8) should be connected in parallel. Some experimentation with the value of this resistor may be required. If you want to make use of the internal microphone then R8 should be replaced with a wire link.

Circuit diagram :

Wireless Baby Monitor-Circuit-Diagramwq

Figure 2-Wireless Baby Monitor Circuit Diagram

When the walkie-talkie switches to transmit the built-in amplifier stops producing a signal and T1 turns off. However, since electrolytic capacitor C3 has been charged up in the mean time, transistors T2 and T3 will keep conducting for several seconds until C3 has been almost discharged via R4. In the Elektor labs a simpler version with the same functionality (Figure 2) has been designed for use with a cheaper PMR set that can be obtained from Conrad Electronics (PMR Pocket Comm Active Pair, order number 930444). These walkie-talkies have separate jack sockets for the LS/Mic and PTT connections.

When there is a call a series of tones is produced that is used to turn on T1 via R3. T1 then activates the PTT function and the microphone amplifier is turned on. How-ever, it ’s not just the audio signal that is used, but also the DC offset produced when the internal output stage is turned on. Both the internal as well as external loudspeaker are driven via an output capacitor of 100 µF. When there is a call it charges up via R3 and the base-emitter junction of T1. If the walkie-talkie is called often there would be a danger that the output capacitor would remain charged and the DC offset of the audio signal would no longer be sufficient to turn on T1. To prevent this, D1 is connected in reverse across the base-emitter junction of T1, pro-viding a discharge path for the output capacitor.

To keep the circuit active for a minimum amount of time the microphone voltage is used to provide an extra base current. This is done by charging C1 via R1. When the transmitter is turned off the microphone and R2/ D1 provide a discharge path for the capacitor. C2 ensures that the circuit won’t react to spikes caused by interference. As can be seen from the second circuit diagram, use is made of two connectors, a 2.5 mm jack plug for an external headset and a 3.5 mm plug for the PTT function. These connectors are particular to the walkie-talkies we used here. With other types of walkie-talkie you should first check the connection details of the connectors before you connect the circuit up.

When the circuit is used as a baby monitor you should check that the microphone you’re using can pick up all the sounds. In our case the microphone didn’t appear to be very sensitive. The microphone amplifier has probably been designed for a voice that is near the PMR unit. When used as a baby monitor the microphone should therefore be positioned as close to the baby as possible.

Author : Wolfgang Papke - Ton Giesberts - Copyright : Elektor


Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link