Skip to main content

Automatic AC Power Switch


Electrical appliances accidentally left on  in (holiday) homes left unoccupied for a  short or a long period consume power  unnecessarily and can present a fire hazard. Everyone will be familiar with those  nagging thoughts, a few miles down the  road from the house: “Did I remember  to switch off the coffee machine? The  lights? The oven?” 


Automatic AC Power Switch-Circuit Diagram
Automatic AC Power Switch Circuit Diagram

Hotel rooms are often equipped with a  switch near the main door which enables the power supply to everything in  the room only when the plastic card (which  might contain a chip or have a magnetic strip  or a pattern of holes) that serves as the room  key is inserted. The circuit idea given here  to switch off lights and other appliances is  along the same lines. The solution is surprisingly simple. 

A reed contact is fitted to the frame of the main entrance door, and a matching magnet  is attached to the door itself such that when  the door is closed the reed contact is also  closed. To enable power to the house, press  S1 briefly. Relay RE1 will pull in and complete  the circuit for all the AC powered appliances in  the house. The relay will be held in even after  the button is released via the second relay contact and the reed contact (‘latching’ function). 

As soon as the main entrance door is  opened, the reed contact will also open.  This in turn releases the latch circuit and  consequently the relay drops out. The  various connected appliances will thus  automatically and inevitably be switched  off as soon as the house is left. The circuit is principally designed for  small holiday homes, where this mode  of operation is particularly practical. Of course, for any circuit that deals in AC  powerline voltages, we must mention  the following caution. 

Caution:
shock hazard! Construction and connection of this circuit  should only be carried out by suitably-qualified  personnel, and all applicable electrical safety  regulations must be observed. In particular, it  is essential to ensure that the relay chosen is  appropriate for use at domestic AC grid volt-ages and is suitably rated to carry the required  current.




Comments

Popular posts from this blog

A basic Arduino Solar PV Monitor

I have just recently had solar pv installed, mainly to future proof my energy costs, I do not expect it to be like drilling for oil in my back garden, however the return looks to be encouraging. The install gives you another single unit meter, from this you will see the total amount the panels produce, but that is about it. I wanted to know how much the production was as it was happening, I discovered the light blinks on the front of the meter will flash 1000 times for each kWh of electricity which passes through. The rate of the flashing of the LED tells you how much power is currently passing through the meter. [ ]

Build a Key Operated Gate Locking System Circuit

This simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorized entry. Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start. Fig. 1: Bl...

Apple releases TV spot for new iPods

Apple has just released a fun commercial to showcase its new line of iPod players and the various colours they come in. The TV spot titled ‘Bounce’, has a bunch of colourful iPod touch, iPod nano and iPod shuffles er…bouncing to music. With all that colour and dancing and bouncing, you may forget that Apple’s latest gen line of iPods has some other awesome features. For instance, the fifth gen iPod touch comes with Siri, 4-inch retina display and an A5 chipset. Maybe the next ad will showcase some of these features with less bouncing.link